Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
International journal of molecular sciences ; 24(5), 2023.
Article in English | EuropePMC | ID: covidwho-2269621

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte–platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.

2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2269622

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , SARS-CoV-2 , COVID-19/metabolism , Megakaryocytes/metabolism , Cell Line
3.
J Pers Med ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1911444

ABSTRACT

In the ongoing global COVID-19 pandemic, male sex is a risk factor for severe disease and death, and the reasons for these clinical discrepancies are largely unknown. The aim of this work is to study the influence of sex on the course of infection and the differences in prognostic markers between genders in COVID-19 patients. Our cohort consisted of 64 adult patients (n = 34 men and n = 30 women) with PCR-proven SARS-CoV-2 infection. Further, a group of patients was characterized by a different severity degree (n = 8 high- and n = 8 low-grade individuals for both male and female patients). As expected, the serum concentrations of LDH, fibrinogen, CRP, and leucocyte count in men were significantly higher than in females. When serum concentrations of the inflammatory cytokines, including IL-6, IL-2, IP-10 and IL-4 and chemokines like MCP-1, were measured with multiplex ELISA, no significant differences between male and female patients were found. In COVID-19 patients, we recently attributed a new prognostic value to BPIFB4, a natural defensin against dysregulation of the immune responses. Here, we clarify that BPIFB4 is inversely related to the disease degree in men but not in women. Indeed, higher levels of BPIFB4 characterized low-grade male patients compared to high-grade ones. On the contrary, no significant difference was reported between low-grade female patients and high-grade ones. In conclusion, the identification of BPIFB4 as a biomarker of mild/moderate disease and its sex-specific activity would open an interesting field for research to underpin gender-related susceptibility to the disease.

SELECTION OF CITATIONS
SEARCH DETAIL